This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
[link] Introduction: Todays businesses face a pivotal question: can emerging technologies like AI and real-time data platforms reduce or even replace the need for traditional customer surveys in managing customer experience (CX)? Technologies enabling this include machinelearning algorithms that learn from historical instances (e.g.,
Instead of relying on the traditional method of manually keeping track of customer interactions, feedback, and agent performance, contact center analytics centers around improving and optimizing customer service processes with the help of advanced analytics like AI, machinelearning, etc. Let’s understand each of them.
Sentiment analysis is the process of analyzing open-ended feedback using AI technologies like natural language processing, machinelearning, and text analytics. However, most customer feedback comes as unstructured datalacking a common shape or formwhich can make analysis time-consuming and complex. Lets dive in and explore.
Social media text analytics is the process of analyzing text-based data from social media platforms using technologies like NLP, machinelearning, and AI to extract meaningful insights. MachineLearning-Based Analysis : Uses AI models trained on labeled datasets to classify sentiment accurately. Lets find out!
We are so used to Netflix’s recommendations, the tailored playlist of Spotify, shopping recommendations of Amazon, etc, so much so that according to McKinsey 35% of Amazon and 75% of Netflix recommendations are provided by machinelearning algorithms.
Credit risk assessment : AI improves credit risk management by evaluating the creditworthiness of customers by not only assessing traditional data but also alternative data like spending patterns, social media activities, and geolocation. Personalization But With A Twist Of AI Every CX strategy includes personalization.
Text Analytics in Healthcare refers to the process of extracting meaningful insights from unstructured medical text, such as patient records, doctors notes, clinical trial data, and research articles. It uses AI capabilities like NLP and machinelearning to analyze, categorize, and interpret vast amounts of text-based healthcare data.
We organize all of the trending information in your field so you don't have to. Join 20,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content